## Cross Product Cont.



* another way to tell if parallel is thru seeing if one vector multiple of other *
solution:

$$
\begin{aligned}
& \vec{u} \times \vec{v}=\left|\begin{array}{ccc}
i & j & k \\
2 & -1 & 0 \\
1 & -3 & 1
\end{array}\right|=-i-2 j-5 k=\langle-1,-2,-5\rangle \neq 0 \quad \vec{u} \text { not parallel to } \vec{v} \\
& \vec{u} \times \vec{\omega}=\left|\begin{array}{ccc}
i & j & k \\
2 & -1 & 0 \\
2 & -6 & 2
\end{array}\right|=-2 i-4 j-10 k=\langle-2,-4,-10\rangle \neq 0 \quad \vec{u} \text { not parallel to } \vec{w} \\
& \vec{v} \times \vec{w}=\left|\begin{array}{ccc}
j & k \\
1 & -3 & 1 \\
2 & -6 & 2
\end{array}\right|=0_{i}-0 j-0 k=\langle 0,0,0\rangle \quad \vec{v} \text { parallel to } \vec{w}
\end{aligned}
$$

right hand rule :

$\downarrow$
$\vec{u} \times \vec{v}=-\vec{v} \times \vec{u}$


* right hand rule: point right hand in direction of 1st vector, curl fingers in direction of and vector, look a direction thumb points *
* if you want $\theta \rightarrow$ use dot product not cross product bc easier*
extra: real life appearances of $\vec{u} \times \vec{v}$ (forces, torque ...)

- maxwell's laws

